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This paper is concerned with how management and organisational influences can be 
factored into risk assessments. A case study from the rail transportation sector illustrates 
how organisational factors can act as high level influences which are manifest as operational 
errors giving rise to major accidents. A model is proposed which describes the 
interrelationships between management influences, immediate causes and operational 
errors. This model can be used for organisational auditing, monitoring and system design. A 
strategy is described for collecting data from an existing organisation to develop a specific 
form of the generic model. The final issue addressed is the use of the model to quantify the 
effects of organisational influences on risk arising from human error. A numerical case 
study is provided to illustrate the approach.  
 

1 INTRODUCTION  
 

There is currently considerable interest in the question of 
how the effects of management and organisational variables 
can be incorporated into probabilistic safety assessment. 
Studies of major accidents from a variety of industries, e.g. 
the Challenger Space Shuttle, Exxon Valdez, Piper Alpha, 
Three Mile Island, Chernobyl, indicate that they rarely arise 
from random failures of hardware as modelled by classical 
reliability theory. Usually the disaster arises from a 
combination of active and latent human errors in areas such 
as design, operations and maintenance.  
The characteristic of latent errors is that they do not 
immediately degrade the functioning of the system, but in 
combination with other events, which may be active human 
errors or other random events in the environment, they give 
rise to a catastrophic failure. Two categories of latent errors 
can be identified: operational and organisational. Typical 
operational latent errors include maintenance errors, which 
may make critical systems unavailable or leave the system in 
a vulnerable state. Organisational latent errors include 
design errors, which give rise to intrinsically unsafe systems, 
and management or policy errors, which create conditions 
which induce active human  
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errors. The latent failure concept is discussed more fully by 
Reason l and Wagenaar et al2

As a first approximation, it is convenient to model accident 
causation as a process involving three levels. This model 
will be illustrated with reference to an actual railway 
accident which occurred in the United Kingdom in 1988. 
This was the Clapham Junction disaster, which arose as a 
result of wiring errors made on a relay controlling signals. 
Because of the errors, signal failures occurred which led to a 
train collision in which 21 people died. The pattern of 
causation for this accident is illustrated in Figs 1 and 2.  
The combination of latent, active and recovery errors that 
gave rise to the disaster are set out on the left of Fig. 1 and 
are detailed in Table 1. When other wiring systems were 
examined after the accident, similar wiring errors were 
observed in many cases, suggesting that the conditions 
which induced the failures were systemic in nature. The 
factors to the right of Fig. 1 are the major. (but by no means 
all) immediate influences ( or error-inducing factors ) which 
determined the likelihood of the active, latent and recovery 
errors implicated in the accident. Figure 1 illustrates the 
many-to-many nature of the patterns of influences between 
the immediate causes and the errors.  
In Fig. 2, the third level of the causal network is illustrated, 
where some of the higher level policy factors influence the 
lower level error-inducing factors 
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Fig 1: Relationship between error-inducing factors 
and error for a major disaster 

by a similar many-to-many pattern of influences. Even this 
rather complex picture is a simplification of the real 
situation, where there may also be interactions between 
factors at the same level (e.g. safety policy and safety 
culture). In addition, other more global factors such as the 
general economic situation, and the prevailing political 
philosophy may also have an impact on the policy levels.  
In our experience in investigating serious accidents, the 
level of complexity that is depicted above is typical of that 
encountered in systems with potential for major disasters in 
industries such as nuclear power, chemical processing, 
transport systems and aerospace. Given this complexity, it 
may be questioned if even a qualitative modelling of 
potential failures is possible, let alone any attempt to 
quantify these probabilities for incorporation in risk 
assessments. In our opinion, these objectives are achievable, 
even thought considerable work will be necessary to fully 
develop a comprehensive assessment methodology. 
However, a variety of techniques have already been 
developed and applied, which can be combined to form the 
basis for this methodology. In the following sections both 
the qualitative and quantitative aspects of the methodology 
will be described, and a worked example will be provided.  
 

Fig. 2. Relationship between policy deficiencies and 
error-inducing factors for a disaster .

Table I. Errors contributing to the Clapham J unction disaster 
(see Fig. I) 

 
Latent error 1 Technician removes old wire from 

relay terminals to install new 
connections but fails to insulate the 
ends of the old wire.  

Latent error 2 Technician fails to disconnect the old 
wire at the power supply end. 

Latent error 3 Technician fails to bend back old wire 
clear of relay terminals. 

Recovery error 1 Supervisor fails to carry out specified 
wiring checks therefore errors not 
detected. 

Active error Technician works on adjacent relay 
two weeks later. It is assumed that he 
disturbed the old live wire and it was 
left in contact with the relay terminals, 
giving rise to signal irregularities that 
eventually caused the accident. 

Recovery error 2 Irregular signals noticed by drivers 
prior to the accident but not reported 
be- cause of time pressure. 

2 QUALITATIVE MODELLING OF RISK IN MAJOR 
HAZARD SYSTEMS  
 
When an accident such as Chernobyl, Exxon Valdez or 
Clapham Junction is analysed in depth it appears at 
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first to be unique. However, certain generic features of such 
accidents are apparent when a large number of cases are 
examined. Figure 3 is intended to indicate, in a simplified 
manner, how such a generic model might be represented. 
The generic model is called MACHINE (Model of Accident 
Causation using Hierarchical Influence Network). The direct 
causes of all accidents are combinations of human errors, 
hardware failures and external events. In Fig. 3 these are 
broken down in more detail. Active, latent and recovery 
errors have already been discussed. In the case of hardware 
fail4res, these can be categorized under two headings. 
Random failures are the normal failures considered by 
reliability models, e.g. due to the anticipated processes of 
wear. Extensive data are available on the distribution of 
such failures from testing and other sources. Human-
induced failures comprise two subcategories, those due to 
human actions in areas such as assembly, testing and 
maintenance, and those due to inherent design errors which 
give rise to unpredicted failure modes or reduced life cycle. 
As all reliability engineers will be aware, most failure rates 
for components derived from field data actually include 
contributions from human- induced failures. To this extent, 
such data are not intrinsic properties of the components, but 
are dependent on the human influences (management, 
organisational) in the systems where the components 
are employed. 

The third major class of direct causes are external 
events. These events are the characteristics of the 
environment in which the system operates. Typical 
external events considered in PSAs include seismic, 
geological, and other natural phenomena and 
collisions from aircraft and other objects, depending 
on the system. Such events are considered to be 
independent of any human influence within the 
boundaries of the system being analysed, although the 
risk management policy is expected to ensure that 
adequate defences are available against external events 
which constitute significant threats to the system.  
The first level influences in Fig. 3 are intended to 
represent typical factors which have a direct effect on 
the likelihood of occurrence of the immediate causes 
of the accident. In the diagram, those influences that 
impinge on the human causes of failures are described 
more extensively. However, the large number of 
influences on the human causes of hardware failures 
should be noted. For completeness, all of the 
interconnections between the immediate causes and 
the first level causal factors are represented. In 
practice, the strengths of these influences will vary 
considerably, and thus it may only 
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be necessary to model a few highly significant influences.  
The second level influences represent typical policy level 
factors which determine the likelihood that the first level 
influences will be negative or positive. In many cases there 
will be intermediate levels between those indicated in the 
model. As indicated by Reason1 and Wagenaar et al.,2 there 
will be managers who interpret and implement the directives 
from the policy level, and who will be directly responsible 
for the states of the first level causal influences. However, 
for the sake of clarity, these influences have been omitted 
from the representation in Fig. 3.  
The model, although obviously incomplete at this stage, 
could easily be extended to accommodate additional 
influences and levels so that it constituted a comprehensive 
generic model of accident causation. A particular advantage 
of the model is that it captures the complexity of the 
interactions between influences and is capable of explicitly 
evaluating the higher level common causes which cascade 
down through the system to modify the likelihood of 
specific errors and system failures at the operational level. A 
further advantage of this structure is that it can be applied 
directly to qualitative and quantitative assessments of risk in 
practical PSA analysis, as will be discussed in later sections.  
 
3 PRACTICAL APPLICATION OF THE MODEL  
 
There are many potential practical applications of the model 
described in the previous section. If it is sufficiently 
comprehensive, and captures the various levels of influences 
that actually determine the likelihood of accidents, then it 
could provide the basis for an auditing tool which could be 
used by both companies and regulators. If a set of indicators 
were developed that could be applied to evaluate significant 
factors in the pattern of influences (e.g. those factors which 
had a major influence on a number of lower level factors), 
then the risk potential of the system could be assessed by 
carrying out a detailed evaluation of these influences using 
pre-defined criteria. This process could be regarded as a 
form of on-line monitoring to ensure that the integrity of the 
system was being maintained. Another potential application 
would be during the design and development of new 
systems, to ensure that organisational influences with 
particular significance were addressed explicitly as part of 
the organisational design. The other major application area 
of such a model would be in ensuring that quantitative risk 
assessments take into account the effects of the network of 
influences identified by the model. As will be described in 
later sections, the model can be applied directly to 
incorporating the  
 

effects of management and organisational variables in the 
quantification of both human and hardware failures.  
 
4 IMPLEMENTATION ISSUES  
 
There are a number of significant problems involved in 
developing the concept described in the previous sections 
into a practical tool. The major question is how causal 
influence models can be set up which represent the actual 
networks of influences found in real systems. The influences 
depicted in Fig. 3, derived from our own accident studies, 
seem to cover a large proportion of the major factors at level 
1 of the model. Data from Groeneweg et al.3 suggest a very 
similar set of influences (which they call General Failure 
Types) derived from extensive studies of offshore oil 
installations and chemical case studies. This would appear 
to confirm the validity of the overall concept. With regard to 
the interdependencies between influences at different levels, 
in the generic model it is assumed that all of the first level 
influences have some influence on the direct causes of 
failures. The influence of the policy factors on the first level 
factors are specific in some cases (e.g. communications 
systems), and generic in others (e.g. human resource 
management).  
In order to tailor the generic model for a specific system a 
number of requirements are necessary. The first of these is 
an elicitation technique to capture from individuals in the 
organisation the detailed structures of influences that could 
result or have resulted in accidents. This type of information 
requires inputs from teams of individuals from all levels in 
the organisation, to ensure that the interrelationships 
between influences at different levels are captured. The 
obvious first source of information is accident 
investigations. However , evaluations of near-misses would 
also constitute a significant source of data.  
In addition to the elicitation process, some form of 
representation of the influences is required which is 
compatible with the generic model of Fig. 3. Fortunately, 
both the elicitation and representation requirements are 
satisfied by a system which has already been developed for 
another purpose. This system has the additional advantage 
that it lends itself to the subsequent quantification of the 
effects of the various influences identified.  
 
s THE INFLUENCE MODELLING AND ASSESSMENT 
SYSTEM (IMAS)  
 
IMAS was originally developed by Human Reliability 
Associates and the London School of Economics
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(Ref. 4) as a method for eliciting the diagnostic models held 
by nuclear power plant operators when responding to 
emergencies. Essentially, the diagnostic model is elicited by 
means of an interactive computer program, which represents 
the model in the form of a network comprising three 
entities:  
 
(a) Events are occurrences that are causally connected to 
other events or nodes in the network. For example the event 
'Leak in a steam generator' can lead to the event 
'Radioactivity in the secondary circuit'.  
(b) Linkages are patterns of connections between events that 
are causally related. In the original IMAS system, two types 
of linkage were defined: leads to and stems from.  
( c ) Indicators are information sources which can be 
directly observed by the operator, which indicate states or 
events which cannot be accessed directly. For example, the 
event 'Radioactivity in the secondary circuit' is indicated by 
a radiation alarm in the control room.  
 
This structure can readily be applied to the MACHINE 
accident causation influence network. Instead of events that 
causally lead to other events, the nodes in this case are states 
that influence other states, which in turn influence the 
likelihood of events such as active or latent errors or 
hardware failures. As will be discussed later, these links are 
probabilistic in nature. Thus, the existence of a good human 
resource management policy will increase the probability 
that there will be an adequate match between demands and 
resources, and effective training. However, the existence of 
the good human resource policy does not guarantee that 
resources will be matched or training optimized. This is 
because other influences, e.g. feedback from operational 
experience, may impinge on resource matching and training. 
Another point to bear in mind is that the generic model is 
what Phillips et als refer to as a 'requisite' model. This 
means that it does not attempt to capture every 
interrelationship but only those which are necessary to 
provide a usable model for the purpose at hand. Thus there 
may be other influences, e.g. the culture at the workplace, 
which influence the effectiveness of training, which are not 
included in the model.  
Some points about the elicitation process have already been 
mentioned, i.e. the need for a broad range of individuals to 
be represented in the elicitation team. Another requirement 
is that the interactive session is led by an experienced 
facilitator who is aware of group dynamics and ensures that 
the session is not dominated by assertive individuals. 
Ideally, the model should be built up over a period of time 
by considering near-misses as well as accidents.  
 

Near-misses will be much more frequent than 
accidents, and just as useful in supplying information 
to build up the structure of. the model.  
The indicators in the IMAS system have their 
counterpart in MACHINE in terms of scales which 
define measurable variables used to assess the state of 
the factors in the influence network. Thus, the 
indicator for operational feedback would be a 
numerical scale defining at one end the observable 
attributes of an optimal operational feedback system 
(e.g. ownership by operators, provision of job aids to 
assist in determining root causes, direct 
communication of summary results to policy makers at 
regular intervals) and at the other end the 
characteristics of a poor or ineffective operational 
feedback system (e.g. no consideration of causation, 
no active participation by workforce, no feedback of 
results to policy makers). Indicators allow a numerical 
score to be assigned to the influences. These numerical 
scores have a number of applications. A-t a simple 
level, they can be aggregated to give an overall 
indication of the 'health' of the system. A similar 
procedure has been described by Groeneweg et al.3 in 
the context of offshore operators. However, the 
MACHINE approach allows a more comprehensive 
audit, since it addresses second level organisational 
factors as well as direct level causative influences.  
 
6 USING MACHINE FOR THE QUANTIFICATION OF 
MANAGEMENT INFLUENCES  
 
The network representation of accident causation used in 
MACHINE lends itself readily to incorporating management 
influences into PSA assessments. The resources required to 
do this are significant, but this is an unavoidable 
consequence of the complexity of the relationships between 
management policy variables and direct causative 
influences.  
The MACHINE influence network is isomorphic with the 
Influence Diagram approach which was first applied to 
human reliability assessment by myself and my colleagues at 
the London School of Economics (Ref. 5). In order to 
illustrate directly how the MACHINE model described in 
previous sections can be applied to PSA assessment, a 
simplified analysis of certain aspects of a general accident 
situation will be presented. It should be emphasized that the 
numerical values used in this example are purely for 
illustrative purposes. Space constraints preclude a detailed 
description of the Influence Diagram methodology. 
However, further information is available in Phillips et al. ,
5 and the main features of the approach will be illustrated in 
the following example. 
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6.1 An illustrative example of quantification for PSA 
using MACHINE and Influence Diagrams  
 
In this example, we shall perform the analysis of the human 
errors in a typical accident scenario. The error probability 
calculated in this example is global and includes active, 
latent and recovery errors. Only a subset of the influences 
will be presented. However , the application to a more 
complex analysis is a simple extension to that presented 
here. It is also worth pointing out that the analysis could 
easily be extended to include the human influences on 
hardware failures, as set out in Fig. 3. The example 
illustrates how the probability of operator errors might have 
been assessed prior to the accident occurring, by evaluating 
the effects of level and level 2 factors.  
The Influence Diagram for operator errors is given in Fig. 4. 
The main level I factors influencing the probability of error 
are quality of training, availability of effective operating 
instructions and time pressure on the operator. Two factors 
are specified as influencing the quality of training. These are 
the extent to which task analysis was employed to generate 
the training specification, and the use of feedback to modify 
the existing training regime in the light of operational 
experience. The availability of effective operating 
instructions is modeled as being dependent upon two policy 
factors. The first of these  
 

is the policy for developing instructions, which ensures that 
procedures are kept up to date, and are designed according 
to accepted standards. The other policy factor is project 
management, since this influences the early definition of 
work required, so that appropriate instructions will be 
available at the workplace when required.  
Project management also influences the likelihood that 
staffing levels will be adequate for the tasks required. This 
latter factor, together with the extent to which appropriate 
jobs are assigned to individuals, and the complexity of the 
jobs, all influence the level of time pressure likely to be felt 
by the operator .  
 
6.2 Commentary on the calculations  
 
The information required to perform the numerical 
calculations for the Influence Diagram is provided in the 
Appendix. In this section, a commentary on these 
calculations will be provided. In calculation Al, the 
assessment team is asked to evaluate the evidence that 
feedback from operational experience is used to develop 
training. In order to make this evaluation, they will be 
provided with an 'indicator' in the form of a scale specifying 
the nature of the evidence that should be taken into account. 
For example, the end of the scale defining the ideal situation 
would include conditions such as: 'Results from operational 
ex-  

 

Fig. 4. Influence Diagram 
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perience fed directly to the training department', and 
'Evidence that training regime is modified as a result of 
feedback'. The other end of the scale would describe the 
worst case situation, for example 'No feedback from 
operational experience into training'. In the example cited, 
the evidence strongly indicates that feedback is not used 
effectively in developing training. It should be noted that the 
quantities 0.2 and 0.8 are not strictly speaking probabilities, 
but actually assessments of the weight of evidence regarding 
the variable being assessed. They can, however, be treated 
as probabilities for the purpose of calculations.  
Calculation A2 contains a similar assessment to Al but for 
the use of task analysis. As illustrated in A3, the assessment 
team is then asked to evaluate the weight of evidence that 
the quality of training will be high (or low) given various 
combinations of the influencing factors feedback and use of 
task analysis. Of course, such evaluations are difficult to 
make. However, they utilise whatever expert knowledge is 
possessed by the evaluation team, and factor this into the 
analysis. They also allow the assessors to factor into their 
evaluations any interactions between factors. For example, 
the combined effects of poor feedback and non-use of task 
analysis may degrade the quality of training more strongly 
than either influence in isolation. Each of the conditional 
assessments is then weighted by the results of stages Al and 
A2 and the products added together to give an estimate of 
the unconditional probability that the training is adequate.  
Similar assessments are performed to evaluate the 
probability that effective operating instructions are available 
(A6) that staffing levels are adequate (A9) and that time 
pressure will be high or low (AlO). In this last case, since 
three influences impact upon time pressure, eight joint 
assessments need to be made.  
Although these combined assessments are arduous, it should 
be noted that the evaluations of the effects of combinations 
of influences may be regarded as applicable across a range 
of systems, and hence would only need to be performed 
once for a generic model. The system specific evaluations 
would then be the simpler level 2 assessments set out in Al, 
A2, A4, AS, A7 and A8. As discussed earlier, guidance for 
performing these assessments could be provided by the use 
of indicator scales delineating the conditions for the least 
and most favourable ends of the scales. Similar scales can be 
used to make direct evaluations of the level 1 influences, if 
the assessments described earlier are judged to be too 
difficult. Even if the full assessments are made, it is useful 
to compare these with the indirect assessments to check 
convergence.  
The final stage of the procedure is to generate an overall 
unconditional probability of human error (All). This is 

achieved by assigning probabilities of error to combinations 
of the three first level  
 
influences: quality of training, availability of operating 
instructions and time pressure. These conditional 
probabilities are generic, in that they could apply to any 
system. They are made specific to the situation under 
consideration by multiplying them by the assessed 
probabilities of the level 1 influences, as derived from the 
earlier analyses. These products are then summed to give the 
overall unconditional probability of error occurrence in the 
situation being evaluated.  
The assignment of probabilities is problematic, given the 
known difficulties in obtaining empirical data. If these 
assessments are made using absolute probability judgment 
(see Ref. 6), the assessors are able to modify the 
probabilities to reflect any perceived interactions between 
combinations of level 1 influences. If this requirement is not 
critical, then other quantification methods can be employed 
to evaluate the required intermediate probabilities.  
The Success Likelihood Index Method (SLIM) (Ref. 7) is 
particularly suitable for this, since it evaluates probabilities 
as a function of variations in Performance Influencing 
Factors which correspond to the level 1 factors used in this 
example. Each of the eight conditions in All can be treated 
as a separate task for evaluation by SLIM, using common 
weights for each factor across all conditions, but differing 
ratings to reflect the differing conditions in each case. SLIM 
requires calibration data to be supplied for the two end-point 
conditions, but this is considerably less onerous than 
evaluating probabilities for all conditions. Another source of 
probabilities to include in All would be laboratory 
experiments where the first level influencing factors were 
varied systematically.  
 
7 CONCLUSIONS  
 
The modelling approach described in this paper , although at 
an early stage of its development, has the potential to 
address both qualitative and quantitative aspects of 
assessment of the human contribution to risk within the 
same framework. The MACHINE model can be used as the 
basis for an audit tool to monitor the organisational and 
management factors that impinge on risk, as well as the 
more direct causal factors that determine human and 
hardware failure probabilities. The next stage of 
development of MACHINE is to embark upon a series of 
field studies to determine if the provisional influencing 
factors assigned to the model are truly generic in nature, or 
if the factors vary within different industries. The numerical 
applications of the model need to be investigated by 
performing independent evaluations of the same plant to 
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model's predictions by comparisons with human and 
hardware near miss and error rate data from operating 
plants.  
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APPENDIX: INFLUENCE DIAGRAM CALCULATIONS  
 

At What is the weight of evidence for use of feedback 
from operational experience in developing training? 

A2 What is the weight or evidence or use or task 
analysis in developing training? 

Good Poor Used Not used 
0.2 0.8 0.2 0.8 

A3 For quality of training:  
 

If feedback then 
weight of  

and task analysis evidence that  Joint weights (feedback x task 
analysis ) 

is is Quality of Training is  
 High Low  
Good Used 0.95 0.05 0.04 = (0.2 x 0.2) 
Good  Not used 0.80 0.20 0.16 = (0.2 x 0.8) 
Poor Used 0.15 0.85 0.16 = (0.8 x 0.2) 
Poor Not used 0.10 0.90 0.64 = (0.8 x 0.8) 
Unconditional Probability ( weighted sum) that Quality of Training is 
High Low 
0.254 0.746 
0.25 0.75 (rounded) 

A4 What is the weight of evidence that policy for generating 
instructions is: 

A5 What is the weight of evidence that project management 
is: 

Effective? Ineffective? Effective? Ineffective? 
0.3 0.7 0.1 0.9 
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A6 For availability of effective operating instructions:  
 
If Policy for 
generating and 
instructions is 

Project in 
management is 

then weight of evidence that 
good operating instructions are 

 Joint weights  
(Policy x Project Management)  

 Available Not available  
Effective  Effective  0.90 0.1 0.03=(0.3x0.1) 
Effective Ineffective 0.60 0.40 0.27=(0.3x0.9) 
Ineffective Effective 0.50 0.50 0.07=(0.7x0.1) 
Ineffective Ineffective 0.05 0.95 0.63=(0.7x0.9) 
 

Unconditional Probability ( weighted sum) that effective 
operating instructions are 
Available Not available 
0.255 0.744 
0.26 0.74 (rounded) 
 
A 7 What is the weight of evidence for assignment of 
job roles?  

A8 What is the weight of evidence for task complexity? 

Good Poor High Low 
0.5 0.5 0.6 0.4 
 

A9 Staffing levels  
 

If Project 
management is 

then weight of evidence for staffing levels 
being 

Weights 
(Project Management) 

 Adequate Inadequate 
Effective 0.6  0.2 0.1 
Ineffective 0.4  0.8 0.9 
 

Unconditional Probability ( weighted sum) that staffing 
levels are  
Adequate Inadequate 
0.24  0.76  
0.2 0.8 (rounded) 
 
Al0 For Time Pressure:  
 
If  Staffing and 
levels are 

Assignment of job 
roles is 

and Task 
complexity is 

then weight of evidence for 
Time Pressure being 

Weights 

 Low  High (Staffing Job x levels roles 
x Task complexity) 

Adequate  Good  Low  0-95  0.05 0':70 
0.10 0.75 

0-072 = (0-24 x 0-5 x 0.6) 

Adequate Good High  0.30  0-048 = (0.24 x 0.5 x 0-4) 
Adequate Poor  Low 0.90  0-072 = (0.24 x 0-5 x 0.6) 



Adequate Poor High 0.25  0-048 = (0.24 x 0-5 x 0.4) 
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AlO (continued) For time pressure:  
 
If Staffing and 
levels are  

Assignment of job 
roles is 

and Task 
complexity is 

then weight of evidence for 
Time Pressure being 

Weights 

 Low  High Weights (Staffing Job Task 
levels x roles x complexity) 

Inadequate  Good  Low  0.50  0.50  0.23 = (0.76 x 0.5 x 0.6) 
Inadequate  Good High 0.20 0.80 0.15 = (0.76 x 0.5 x 0.4) 
Inadequate Poor Low 0.40 0.60 0.23 = (0.76 x 0.5 x 0.6) 
Inadequate Poor High 0.01 0.99 0.15 = (0.76 x 0.5 x 0.4) 
 

Unconditional Probability ( weighted sum) that time pressure is  
 
High Low 
0.3981 0.6019  

 
0.40 0.60 (rounded) 
 
A11 For the task modeled:  
 
If quality of 
and training is 

effective 
operating 
instructions are 

and Time 
pressure is 

then the probability of Joint Probabilities  
(Quality of Operating Time 
training X instructions X
pressure). 

Success Failure 
High  Available  Low  0-9999  0.0001  0.0390 = (0.25 x 0.26 x 

0.60)  
High Available  High  0-9995  

 
0.0005  0.0258 = (0.25 x 0.26 x 

0.40) 
High Not available Low 0.9992 0.0008 0.1137 = (0.25 x 0.74 x 

0.60) 
High Not available High 0.999 0.0010 0.0752 = (0.25 x 0.74 x 

0.40) 
Low Available Low 0.999 0.0010 0.1145 = (0.75 x 0.26 x 

0.60) 
Low  Available High 0.993 0.0070 0.076 = (0.75 x 0.26 x 0.40) 
Low Not available Low 0.991  0.0090 0.3341 = (0.75 x 0.74 x 

0.60) 
Low Not available High 0.990 0.0100 0.2209 = (0.75 x 0.74 x 

0.40) 
 
Assessed Unconditional Probability of overall task success or failure  
 
(CALCULATED AS THE SUMS OF THE PRODUCTS OF EACH SUCCESS AND FAILURE PROBABILITY 
WITH THE CORRESPONDING JOINT PROBABILITIES)  
 
Success Failure 
0-994 0.006 (rounded) 
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